
-» • .

3i

^ THE UNIVERSITY OF MICHIGAN

CONCOMP
November 1967

PDP-8 ASSEMBLER

Michael Powers

Reproduced by the
fUARiNGHOUSP

or Federal Scentific & TechL I

J

I
I
I
I
s
I
I
I
I
i
I
I
I
I
I
I
I
I
I

CONCOMP:

THE UNIVERSITY OF MICHIGAN

Memorandum 12

PDP-8 ASSEMBLER

Michael Powers

Research in Conversational Use of Computers
ORA Project 07449

F.H. Westervelt, Director

supported by:

DEPARTMENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

November 1967

--—J

■

PREFACE

This report, can be viewed as either an operating

manual for the PDP-8 assembler or as a progress report on the

Dexembler. The Dexembler is an assembler which hopefully will

assemble PDP-7, PDP-8, or PDP-9 programs, depending on which

of several possible tables it reads. The PDP-8 assembler, 8ASS

is a realization of this assembler, but one which is not fully

parameterized. As described in this report, the PDP-8 Assembler

produces only absolute code and assembles only for the PDP-8

(and PDP-4).

Michael Powers

25 October 1967

iii

i» ■"-

I
I
I
I
I
I

I
I
I
1
I
I
I
I
I
]
1

TABLE OF CONTENTS

Page

PREFACE iii

PDP-8 ASSEMBLER 1

I. INTRODUCTION 1

II. ASSEMBLY PROCESSING 1

III . 8ASS IN MTS 3

IV. NAMES AND EXPRESSIONS 4

V. INSTRUCTIONS AND PROCEDURE CALLS 6

VI. DEBUGGING AIDS 8

VII. OBJECT DECKS 9

APPENDIX I 11

I
■

BLANK PAGE

PDP-8 ASSEMBLER

I. INTRODUCTION

The following sections describe the PDP-8 Assembler

(8ASS), which is a collection of programs written mostly in

FORTRAN IV (G) and operating under the Michigan Terminal System

(MTS) on the IBM 360/67. 8ASS assembles programs for the Digital

Equipment Corporation's (DEC) PDP-5 and PDP-8 computers. Once

a program has been assembled, it may be punched on cards, saved

in a file, or transmitted through the Data Concentrator over

data lines. It is also possible to obtain binary paper tapes

by use of the Data Concentrator.

The reader is assumed to be familiar with the ref-

erence manual for the PDP-8 available from DEC (Programmed Data

Processor-8 User's Handbook, DIGITAL F-85, Digital Equipment

Corporation, Maynard, Mass., 1964). lur the description and

use of assemblers in general the reader is referred to the

description of the PAL-III assembler for the PDP-8 available

from DEC (PAL- III Symbolic Assembler Programming Manual , DIGITAL

8/3/S, Digital Equipment Corporation, Maynard, Mass., 1965).

8ASS follows the PAL-III operation code and addressing conven-

tions. The input format and program listing conventions of 8ASS

are slightly different from those of PAL-III, however, since

8ASS is organized around a line format while PAL-III is organ-

ized around a paper tape format.

II. ASSEMBLY PROCESSING

I
I
I

An assembler is a vehicle for the transformation of

symbolic source programs into the internal representation of

machine instructions and data. Each PDP-8 machine instruction

occupies exactly one location in its memory. The assembly

language program is a sequence of input lines to the assembler

which specifies these instructions in symbolic form. The as-

sembler reads these lines and constructs, or assembles, the

corresponding PDP-8 binary words.

-1-

■"■

-2-

Symbolic names tor the PDP-8 memory locations are

defined by their appe;ranee at the beginning of an

input line. Symbolic names for operation codes appear next,

sometimes followed by operands. The assembler lists a value

corresponding to the value of the operator, augmented by the

value of the operand. Each such value is associated with a

PDP-8 address by means of the instruction location counter

(JLC). The ILC contains a value which is incremented modulo

4096 after each PDP-8 word is generated. Normally therefore,

assembled words are placed in sequentially ascendinb locations

in PDP-8 memory.

Some input lines do not generate PDP-8 words, but

activate internal procedures in 8ASS. Several names which

may appear in the operand are not operation codes but proce-

dure calls (see Section 6). For example, the procedure call

ORG resets the value of the ILC, allowing the programmer to

control the starting location of a block of words.

The symbolic information on each assembly language

line is grouped into four fields: the label, operation code

(opcode), operand, and comment fields. These fields are de-

limited by blanks.

The label field starts at character 1 and is

terminated by the first blank. If it is non-empty it may con-

tain a name of up to eight characters, beginning with a letter,

Any variable used in the program must be defined by its ap-

pearance in the label field, and the variables used with scrno

procedure calls must be predefined, that is, defined at some

point before the procedure call is processed.

The opcode field is the expression starting with

the first non-blank character after the label field, and end-

ing with the next blank. Any variable appearing in the opcode

field must be an operation code.

If the operation code is a microinstruction or a

seif-defining expression, the operand field is empty. Other-

wise, the operand field starts with the first non-blank

-3

character after the opcode field, and ends with the next blank.

Any variable appearing in the operand field must be a label.

The three fields discussed above may extend to the

72nd character. The comment field starts at the end of the

operand field and may extend through the 80th character. It

has no effect on the binary output of the assembler—it is mere-

ly copied onto the assembly listing—but is useful to the pro-

grammer as a method of documentation. If the first character

of the source line is an asterisk (*), the label, opcode, and

operand field are all empty and the card is just copied onto

the output listing.

There are two kinds of output from the assembler,

a binary "deck" and an assembly listing. The former is a list

of the machine program in a form appropriate for loading into

the PDP-8 computer. The latter, the listing, not only provides

the programmer and operator of the PDP-8 with what can be an

invaluable guide to the operation of the program, but also in-

dicates some types of possible programming errors.

Ill. 8ASS IN MTS

The PDP-8 Assembler is available as a library file

in the Michigan Terminal System (MTS). Its use is invoked by

the SRL'N command, with the following logical devices specified:

1 The assembly language input lines.

2 A table of opcodes (the library file *89PS) .

6 A tape or file (rewindable) for intermediate

storage .

8 The assembly listing (output).

SPUNCH The binary output (card format)

Example:

$RUN *8ASS;1 = *S0URCE* 2-80PS 6=-F 8 = *SINK* SPUNCH=* PUNCH*

Due to internal size limitations, the size of pro

gram which can be assembled is limited. If a program defines

S symbols and refers to symbols R times (including uses of

operation codes and procedure calls), S and R must satisfy

10(S + 65) + 2R < M.

Three different versions of the assembler are on file, their

only difference being the corresponding value of M.

For *8ASS, M=10,000.

For *8ASS20, M=20,000.

For *8ASS30, M=30,000,

IV. NAMES AND EXPRESSIONS

A program name is a symbol which stands for a

numeric value. It may stand for a sei f-defining value, in

which case it is called a constant, or it may stand for a

value which is defined elsewhere, in which case it is called
a variable. A variable may be an opcode, in which case it

is defined from the input table *80PS (see Section 3) or by

use of the procedure calls OPD or OPDM, or it may be label,

in which case it is defined by its appearance in the label

field of some input line. If this line corresponds to a

PDP-8 memory location, the defined value of the label is the

address of the location; if the operation field of the line

is the procedure call EQU, the defined value of the label is

the value of the expression in the operand field.

The special program name, *, is seif-defining.

Its value is the current contents of the ILC (the value "here").

The following EBCDIC characters may be used in

the formation of names and expressions.

Alphabet ic

upper-case letters A-Z

Numeric

digits 0-9

-5-

Operators

+ - (plus, minus)

Delimiters

expression field delimiter (blank)

comment field delimiter ; (semicolon)

Literal prefix

Program names must be less than nine characters long

Variables may contain alphabetic and numeric characters, but

must begin with a letter. Constants must start with a digit

and may contain digits and A, B, C, D, E, F (see HEXMOD,

Section 5) .

An express ion is a sequence of program names, sep-

arated by the operators + and - , and delimited by blanks.

In the opcode field, any variables must be opcodes or pro-

cedure calls; in the operand field, any variables must be

labels. The assembler evaluates the expression from left to

right by combining the values of the names according to the

operators. In the opcode field, and in the operand fields of

an OPD or OPDM line, the operator + combines values by the

logical OR operation. In the operand field of other pro-

cedure calls and memory-reference instructions, the values

are combined arithmetically (+ for addition, - for 2^

complement subtraction) modulo 4096.

An operand-fie Id expression may be prefixed with

an equal sign (=) which designates an occurrence of a literal.

The value of the expression itself is termed the value of the

literal, and the location to which it is assigned is termed

its address. All such literal occurrences are saved in a

special pool during assembler processing. When a LIT pro-

cedure call is encountered, this pool is assigned machine

locations while multiple occurrences of the same value are

suppressed. All literal occurrences up to this point are re-

placed with addresses which point to the assigned value. All

symbols used in a literal expression must be predefined.

-6

DC—define constant

Define the (optional) symbol in the label field to have a

value equal to the current contents of the instruction loca-

tion counter (ILC). Then substitute the value of the ex-

pression in the operand field itself for the memory location

I
I
I
I

When an expression is evaluated in the operand

field of a memory-reference instruction, a check is made to

determine whether the value of the expression is within the

current memory page. If it is, then the same-page bit of the

assembled instruction is set to one. If a memory-reference

instruction opcode expression is immediately followed by an

asterisk, * , then the indirect bit of the assembled instruc-

tion is set to one. The I and Z conventions of PAL-III

are invalid in 8ASS.

V. INSTRUCTIONS AND PROCEDURE CALLS

A standard set of PDP-8 instruction codes is de-

fined into the *8ASS internal symbol table from an external

table such as *80PS. The opcodes in the list *89PS include

the memory-reference instructions; microinstructions (Group 1

and Group 2 operate instructions, the extended arithmetic

(EAE) instructions, the teletype IOT instructions); and a

number of procedure calls. The machine instruction codes and

their values are listed in the Appendix.

Combined microinstructions can be written as an

opcode expression of microinstructions separated by + oper-

ators. This has the effect of forming the inclusive OR of

the respective values. New instructions can be defined with

the OPD and OPDM procedure calls.

Procedure calls are opcodes which do not represent

PDP-8 machine instruction, but are signals to the assembler

to invoke special procedures. The procedure calls (also

known as pseudo-operations, or pseudo-ops) of *8ASS and the

effects of their procedures are summari zed below.

i

i
i
i

::

i

-7-

signified by the current ILC. (The DC pseudo-op provides

the facility for defining decimal, octal, or address con-

stants in a fashion parelleling the PAL-III custom of

placing the name of the constant itself in the operation

field.)

DECMOD—define constant conversion mode decimal

Set constant conversion to the decimal radix (normal mode

is octal). May be used alternately with the OCTMOD pro-

cedure call any number of times in a program. Note: If

any constant is followed by one of the letters K or T ,

then that constant is assumed of radix eight or ten,

respectively, regardless of the current mode.

DS—define storage

Define the (optional) symbol in the label field to have a

value equal to the current instruction location counter

(ILC). Then add the value of the expression (predefined)

in the operand field to the ILC.

END—end assembly

(Identical to the $ function of PAL-III.) Define the

(optional) symbol in the label field to have a value equal

to the current instruction location counter (ILC). If the

operand expression is non-null, then its value will be

punched on a binary transfer card as the starting address

of the program.

EQU—symbolic equivalence

Define the name in the label field to have a value equal

to that of the expression (predefined) in the operand field

(Similar to the = function of PAL-III.)

LIT—begin literal pool

Begin assignment of literals collected so far in the pro-

gram .

-8-

OCTMOD—define constant conversion mode

Set constant conversion to the octal radix (normal mode).

May be used alternately with the DECMOD procedure call

any number of times in a program.

OPD—operation code definition

Define the name in the label field to designate an instruc-

tion which has an operation code equal to the value of the

expression (predefined) in the operand field. (Note: The

operation and symbol tables of the 8ASS assembler are dis-

joint so that name conflicts can be avoided. In the PAL-III

assembler this is not the case: operation names used in

the operand fields must be disjoint.)

OPDM—memory—reference instruction code definition

Operates identically to the OPD pseudo-op except that the

operation code is presumed to designate a memory-referenced

instruction.

ORG—reset instruction location counter

Reset instruction location counter (ILC) to the value of

the expression (predefined) in the operand field. (Iden-

tical to the * function in PAL-III.)

VI. DEBUGGING AIDS

When the assembler can detect an irresolvable

ambiguity or inconsistency, it prints error comments on the

assembly listing. Typical comments and their meanings are

listed below.

"MULTIPLY DEFINED SYMBOL nnnnnnnn xxxx VARIABLE"

or "...OPCODE." The name "nnnnnnnn" was defined more than

once as a variable by its appearance in the label field and/or

by the EQU procedure call, or more than once as an opcode by

its appearance in the standard instruction table (89PS) and/or

by the procedure call OPD or OPDM. In any case, the line is

I
I
I

• •

"

..

9-

printed, with "xxxx" equal to the defined value, once for

each definition. These comments are printed before the assemb-

ly listing; the four listed below are printed just before the

line to which they apply. The value punched and listed for

the appropriate ILC value is probably wrong.

"UNDEFINED PROGRAM NAME." During the evaluation

of an expression, a name was encountered which was not defined

in the program. Note that names in some procedure calls,

and in literal expressions, must be predefined.

"OFF-PAGE REFERENCE." The value of the operand

expression of a memory-reference instruction is neither an

address on page 0 nor an address on the current page.

"INVALID OPERATOR EXPRESSION." The expression

in the operator field is invalid. For example, there may

be a label in the expression.

"OPERATOR-OPERAND CONFLICT." The opcodes given

are incompatible, or the operator and operand are incompatible.

For example, the invalid operator expression "OSR + RAR" has

a Group 2 and a Group 1 opcode.

A cross-reference table is printed at the end of

the assembly. It lists each variable (label or opcode) used

by the program, along with its value and the contents of the

ILC at each time it was used.

A summary of the number of error comments printed,

the number of source lines processed, the number of symbols

defined (including the standard table), the number of references

to defined symbols, and the number of card images produced

follows the cross - reference table.

VII. OBJECT DECKS

8ASS produces column binary card images suitable

for punching and/or loading into a PDP-8. Text cards con-

tain numbers to be loaded into PDP-8 memory. A transfer card

is punched by the END procedure call if its operand

10

field is non-empty. The transfer card is usually used to

specify a starting address for the PDP-8 program. The format

of a text card is, by column:

Col. 1.

Col. 2.

Col. 3.

Col. 4

.)

a 6-7-9 punch, indicating a text card

N , the number of contiguous PDP-8 words speci

fied by this card (N C 68)

the address of the first word in the block

consecutive PDP-8 word values
Col. 3 + N.

Col. 4+N a checksum, the arithmetic sum of Columns 2

through 3+N, modulo 4096.

Tbc format of a transfer card is:

Col. 1 a 5-7-9 punch, indicating a transfer card

Col. 2 0

Col. 3 the starting address of the program

Col. 4 a checksum

I
I
1
I

I
I
i
1
1
I
I

APPENDIX I

8ASS STANDARD OPCODES

The following opcodes are defined as standard from

the table *80PS. The codes are octal.

I. Memory Reference Instructions

These opcodes may carry the indirect reference

modifier, * , and take an operand in which any na.ne must be a

label .

NAME CODE

AND 0000

DCA 3000

ISZ 2000

JMP 5000

JMS 4000

TAD 1000

II. Microinstructions.

A. Input-Output Instruction (lOT'S)

NAME CODE

IOF 6002

ION 6001

IOT 6000

KCC 6032

KRB 6036

KRS 6034

KSF 6031

TCP 6042

TLS 6046

TSF 6041

11-

J
-__

-12-

B. Group I Operate Instructions

NAME CODE

CIA 7041

CLA 7200

CLL 7100

CMA 7040

CML 7020

GLK 7204

IAC 7001

NOP 7000

OPR 7000

RAL 7004

RAR 7010

RTL 7006

RTR 7012

STA 7240

STL 7120

Group II Operate Instruction

NAME

CLA 7600

HLT 7402

LAS 7604

OSR 7404

SKP 7410

SNL 7420

SMA 7500

SNA 7450

SPA 7510

SZA 7440

SZL 7430

CODE

7600 (when combined with others
in Group II)

I

I
T I

I
I

I
I

1

1

'•

Ö

:;

*•

-13-

Extended Arithmetic Element

NAME

ASR

CAM

CLA

DVI

LSR

MQA

MQL

MUY

NMI

SCA

SHL

CODE

7415

7621

7601

7407

7417

7501

7421

7405

7411

7441

7413

(when combined with
other EAE'S)

J

*m

